

LA-UR-21-21371

Approved for public release; distribution is unlimited.

Title: MgB2 for SRF Cavities

Author(s): Tajima, Tsuyoshi

Intended for: Virtual workshop called Snowmass Workshop. To be presented on 17

February 2021.

Issued: 2021-03-05 (rev.1)

MgB₂ for SRF cavities

Tsuyoshi Tajima Los Alamos National Laboratory

LA-UR-21-21371

Outline

- Introduction
- Comparison between Cu, Nb, Nb₃Sn and MgB₂
- A brief current status of MgB₂ development for SRF cavities
- What needs to be done for HEP
- Other applications

Introduction

- It has been 20 years since MgB₂ was discovered to be superconductive at 39 K in Japan in 2001. There will be a special issue on MgB₂ in a Japanese journal Teion-Kogaku (Low Temperature Engineering). I will be writing an article "Application of MgB₂ for Superconducting RF Cavities" (in English). It will be published in November 2021 or January 2022. I plan to share it with SRF community after I submit it by the end of June 2021.
- Due to its significantly higher T_c compared to Nb (9 K) and Nb₃Sn (18 K), MgB₂ has been an interesting material to explore. This talk will not mention the progress of MgB₂, but will show the comparison with Nb, Nb₃Sn and Cu when a 1.3-GHz TESLA type SRF cavity coated with MgB₂ is successfully developed to discuss pros and cons of MgB₂.

Prediction of B_{sh} and corresponding E_{acc} for an electron accelerator with Nb, NB₃Sn and MgB₂ [based on Catelani and Sethna, Phys. Rev. B78 (2008) 224509]

Material	B _c [mT]	B _{sh} /B _c	B _{sh} [mT]	Corresponding Accelerating Gradient*1 [MV/m]
Nb at 2 K	191	1.2	229	57
Nb ₃ Sn at 2 K	529	0.842	445	111
Nb ₃ Sn at 4 K	509	0.828	421	105
Nb ₃ Sn at 10 K	373	0.784	292	73
MgB ₂ at 2 K	433	0.845	366	92
MgB ₂ at 4 K	429	0.842	361	90
MgB ₂ at 10 K	405	0.823	333	83
MgB ₂ at 20 K	320	0.789	252	63

^{*1}Assuming 4 mT/(MV/m), which is typical for an electron accelerator.

Intrinsic RF Surface resistance at 1.3 GHz with Cu, Nb, Nb₃Sn and MgB₂ as a function of temperature [1-4]. Cu cavity $R_s \propto f^{2/3}$ at low temperatures was used.

- Up to ~8 K, Nb₃Sn is better.
- A good potential to operate the cavity at 20-30 K with cryocoolers.

Cavity power to get a 1 MV electron beam with a 1.3-GHz 9-cell cavity.

In the case of 1.3 GHz TESLA shape 9-cell cavity $G = 270 \ \Omega$ $R/Q = 1036 \ \Omega,$ $P_{cav} = \frac{V^2}{\frac{R}{O} \cdot Q_0} = \frac{V^2}{\frac{R}{O} \cdot \frac{G}{R_c}}$

Required power to remove 1 W as a function of temperature based on 5% Carnot efficiency. 3 kW is required at 2 K vs. 300 W at 20 K.

Cryocooler input power required for the 1 MV electron accelerator with a 1.3-GHz 9-cell cavity based on 5% Carnot efficiency. Combination of the previous 2 slides.

Current status of MgB₂ coating development for SRF cavities

- Hybrid Physical Chemical Vapor Deposition (Temple U.)
 - Flow B₂H₆ gas while Mg is vaporizing
 - Status
 - 3-GHz Cu cavity has been coated and tested at JLAB. ~36 K transition was observed but Q is higher than expected.
 - Seeking funding.
- 2-step coating (LANL)
 - Coat B layer by flowing B₂H₆ gas, then react it with Mg vapor (LANL)
 - Status
 - Reaction tests with Mg vapor using the B samples coated on Sapphire and Nb coupons taken from 1.3-GHz single-cell cavity surfaces have been performed and resulted in all superconducting MgB₂ films with T_c ranging 33-38 K. Coating on Cu has not been tried.
 - A new coating system to coat a 1.3-GHz cavity is being built. To be built by June or July 2021.

• ALD (ANL)

- Proprietary
- Aiming at lower temperature uniform coating. Good for sophisticated structures.
- Seeking funding.

What needs to be done for HEP

- To raise the gradient of Nb cavity by thin MgB₂ coating.
 - ~24% increase in surface field might be possible as shown on the right.
- So, what about coating 100-200 nm thick MgB₂ on Nb cavity to see if this could occur?

B_{VP}: Vortex Penetration Field

[Teng Tan et al., Scientific Reports 6 (2016) 35879]

Using the fact that H_{c1} goes up with the film with thickness \leq ~penetration depth (~110 nm), E_{acc} of 125 MV/m with 2- or 3-layer MgB₂ coating might be possible

[Tajima et al., SRF2011, p. 287]

Other applications

• Since there are higher-cooling-capacity cryocoolers available at 20-30 K as shown below, MgB₂ cavities might be more suited than Nb₃Sn for industrial applications such as the treatment of sludge, waste water, flue gas and medical waste [5].

Table: Maximum cooling capacity of a cryocooler from Sumitomo and Cryomech.

Manufacturer	model	4 K	10 K	20 K	30 K	40 K
Sumitomo	RDK-415	1.5 W				
Sumitomo	CG310SC	5 W				
Sumitomo	RDK-415D		15 W			
Cryomech	AL630			100 W	190 W	270 W

Thanks for your attention! Any questions or comments?

References

- 1. T. Sakai, T. Tanaka, K. Nakao, K. Nogami, M. Inagaki, K. Hayakawa, Y. Hayakawa, T. Shintomi, T. Takatomi, M. Yoshida, M. Fukuda, J. Urakawa, "RF CHARACTERISTICS OF 20K CRYOGENIC 2.6-CELL PHOTOCATHODE RF-GUN TEST CAVITY," Proc. LINAC2014, Geneva, Switzerland, p. 671. http://accelconf.web.cern.ch/LINAC2014/papers/tupp106.pdf.
- 2. S. Posen, M. Liepe, and D. L. Hall, "Proof-of-principle demonstration of Nb₃Sn superconducting radiofrequency cavities for high Q0 applications," APPLIED PHYSICS LETTERS **106** (2015) 082601. http://dx.doi.org/10.1063/1.4913247
- 3. S. Posen and D.L. Hall, "Nb₃Sn superconducting radiofrequency cavities: fabrication, results, properties, and Prospects," Supercond. Sci. Technol. **30** (2017) 033004.
- 4. Brian H. Moeckly, Ken E. Kihlstrom, Alp T. Findikoglu, and Dan E. Oates, "Microwave Properties of MgB₂ Thin Films Grown by Reactive Evaporation, IEEE Trans. Appl. Supercond. **15** (2005) 3308.
- 5. Report of "Workshop on Energy and Environmental Applications of Accelerators," June 24–26, 2015. https://www.osti.gov/servlets/purl/1358082